Temporal Modeling of Longitudinal Patient Trajectories Using Recurrent Neural Architectures for Prognostic Risk Stratification in Multicenter Clinical Cohorts
Keywords:
Recurrent Neural Networks, Longitudinal Data, Temporal Modeling, Prognostic Risk, LSTM, GRU, Deep Learning, EHR, Patient Trajectory, Survival AnalysisAbstract
Prognostic risk stratification is crucial for optimizing care delivery in clinical settings. This paper investigates the application of recurrent neural network (RNN) architectures, such as LSTM and GRU, for modeling longitudinal patient trajectories across multicenter datasets. We propose a temporal deep learning framework that captures time-varying dependencies and nonlinear patterns in multivariate electronic health records (EHRs). The model demonstrates significant performance gains in predicting adverse outcomes such as mortality and readmission, compared to traditional models. Using datasets from diverse clinical cohorts, our approach achieves up to 20% improvement in AUC-ROC for early prediction of patient deterioration. This study underscores the potential of recurrent architectures for clinical decision support in real-world settings.
References
Lin, J., & Luo, S. (2022). Deep learning for the dynamic prediction of multivariate longitudinal and survival data. Statistics in Medicine, 41(2). Link
Gonepally, S., Amuda, K. K., Kumbum, P. K., Adari, V. K., & Chunduru, V. K. (2021). The evolution of software maintenance. Journal of Computer Science Applications and Information Technology, 6(1), 1–8. https://doi.org/10.15226/2474-9257/6/1/00150
Moon, I., et al. (2022). SurvLatent ODE for VTE prediction. MLHC. PDF
Yang, F., et al. (2022). DeepMPM for ICU prediction. BMC Bioinformatics, 23(120). PDF
Tak, D., et al. (2024). Deep Temporal Risk for Glioma. medRxiv. PDF
Müller, M., et al. (2021). Explainable RNNs for ALS. Methods and Programs in Biomedicine. Link
Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2021). Performance evaluation of wireless sensor networks using the wireless power management method. Journal of Computer Science Applications and Information Technology, 6(1), 1–9. https://doi.org/10.15226/2474-9257/6/1/00151
de Swart, W.K., et al. (2025). RNNs in Neurology. Frontiers in Neurology. PDF
S.Sankara Narayanan and M.Ramakrishnan, Software As A Service: MRI Cloud Automated Brain MRI Segmentation And Quantification Web Services, International Journal of Computer Engineering & Technology, 8(2), 2017, pp. 38–48.
Lai, Y., et al. (2022). Deep recurrent models in ICU settings. BMC Bioinformatics. PDF
Lin, J., & Luo, S. (2022). Deep learning for the dynamic prediction of multivariate longitudinal and survival data. Statistics in Medicine, 41(2), 242–259.
Moon, I., Groha, S., & Gusev, A. (2022). SurvLatent ODE: A Neural ODE based time-to-event model with competing risks for longitudinal data improves cancer-associated venous thromboembolism prediction. In Proceedings of Machine Learning for Healthcare Conference, PMLR 182, 218–237.
Sankar Narayanan .S, System Analyst, Anna University Coimbatore , 2010. INTELLECTUAL PROPERY RIGHTS: ECONOMY Vs SCIENCE &TECHNOLOGY. International Journal of Intellectual Property Rights (IJIPR) .Volume:1,Issue:1,Pages:6-10.
Chunduru, V. K., Gonepally, S., Amuda, K. K., Kumbum, P. K., & Adari, V. K. (2022). Evaluation of human information processing: An overview for human-computer interaction using the EDAS method. SOJ Materials Science & Engineering, 9(1), 1–9.
Yang, F., Zhang, J., Chen, W., Lai, Y., Wang, Y., & Zou, Q. (2022). DeepMPM: A mortality risk prediction model using longitudinal EHR data. BMC Bioinformatics, 23, 120.
Tak, D., Garomsa, B.A., Zapaishchykova, A., & Ye, Z. (2024). Longitudinal risk prediction for pediatric glioma with temporal deep learning. medRxiv. Preprint.
Gonepally, S., Amuda, K. K., Kumbum, P. K., Adari, V. K., & Chunduru, V. K. (2022). Teaching software engineering by means of computer game development: Challenges and opportunities using the PROMETHEE method. SOJ Materials Science & Engineering, 9(1), 1–9.
Sankar Narayanan .S System Analyst, Anna University Coimbatore , 2010. PATTERN BASED SOFTWARE PATENT.International Journal of Computer Engineering and Technology (IJCET) -Volume:1,Issue:1,Pages:8-17.