AI-Driven Data Migration Strategies in Multi-Cloud Architectures: Challenges and Innovations

Authors

  • Venkata Nagendra Kumar Kundavaram IT Manager | Goodwill Easter-Seals Minnesota| Davidson, NC, USA. Author

DOI:

https://doi.org/10.63397/ISCSITR-IJSRAIML_2023_04_01_004

Keywords:

Multi-Cloud Architecture, AI-Orchestrated Migration, Data Transfer Optimization, Intelligent Workload Management, Cloud Interoperability, Self-Healing Infrastructure, Migration Challenges, Federated Cloud Systems

Abstract

The evolution of cloud computing has ushered in an era where enterprises adopt multi-cloud strategies to leverage cost efficiencies, redundancy, and agility. However, migrating data across heterogeneous cloud platforms introduces unprecedented complexities around latency, security, compliance, and orchestration. This paper investigates how Artificial Intelligence (AI)-driven strategies—such as predictive modeling, intelligent orchestration, and real-time anomaly detection—can streamline data migration in multi-cloud environments. It synthesizes existing literature, identifies core challenges, proposes a reference architecture, and evaluates the performance benefits of AI-augmented data migration.

References

Zhang, Q., Cheng, L., & Boutaba, R. (2017). Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1), 7-18.

Chauhan, R., Gill, S. S., & Buyya, R. (2018). Data migration strategies in cloud environments. ACM Computing Surveys, 51(6), 121.

Li, X., Liao, X., & Jin, H. (2019). Federated data sharing in cross-cloud environments. Future Generation Computer Systems, 93, 211-220.

Kansal, N., Singh, M., & Gautam, A. (2020). Autonomic resource provisioning in cloud computing. Cluster Computing, 23(3), 1635–1645.

Alzahrani, B., & Buyya, R. (2021). Artificial Intelligence–Driven Multi-Cloud Orchestration. IEEE Cloud Computing, 8(3), 43–52.

Zhao, H., Liu, Y., & Wang, F. (2022). ML-Based Data Placement for Multi-Cloud Storage. Journal of Cloud Computing, 11(1), 54–70.

Qureshi, F., & Kollwitz, E. (2023). Self-Healing Cloud Infrastructures. ResearchGate. PDF

Tandra, A. K. S. (2023). Revolutionizing Data Warehouse Migration with Multi-Cloud Computing. Journal of Computer Science and Technology Studies. PDF

Sharma, D., Raj, P., & Kalra, S. (2020). Data transfer optimization in hybrid clouds. Journal of Grid Computing, 18(2), 349–364.

Gao, Y., Zhang, Z., & Xu, J. (2022). Predictive Workload Forecasting for Cloud Migration. IEEE Transactions on Cloud Computing, 10(1), 93–102.

Mitra, S., & Dutta, A. (2021). Cost-aware AI for dynamic cloud workload balancing. Journal of Parallel and Distributed Computing, 150, 102–117.

Singh, V., & Thomas, J. (2019). Multi-agent AI systems for cloud data migration. Future Internet, 11(6), 137.

Wang, J., & Li, K. (2022). Real-time Anomaly Detection in Data Migration. Journal of Systems Architecture, 126, 102406.

Han, Y., Lee, S., & Kim, J. (2021). Anomaly-Aware Cloud Migration Using Deep Learning. IEEE Access, 9, 115341–115354.

Yadav, V., & Singh, R. (2022). AI-driven Policy Enforcement in Multi-Clouds. Security and Privacy, 5(1), e165.

Das, A., & Mukherjee, A. (2020). Reinforcement learning for secure data migration. International Journal of Cloud Applications and Computing, 10(3), 44–58.

Chen, M., Hao, Y., & Hwang, K. (2021). Intelligent migration under uncertainty using fuzzy logic. Future Generation Computer Systems, 114, 356–368.

Bhatt, P., & Kumari, N. (2022). Energy-Efficient AI Workflows for Cloud Migration. Sustainable Computing: Informatics and Systems, 36, 100747.

Nguyen, T. H., & Tran, L. (2020). Multi-objective optimization for AI migration strategies. Journal of Supercomputing, 76, 8471–8492.

Zhang, L., & Chen, Y. (2018). Virtual machine migration in hybrid clouds. Journal of Cloud Computing, 7(1), 16.

Downloads

Published

2023-05-10

How to Cite

Venkata Nagendra Kumar Kundavaram. (2023). AI-Driven Data Migration Strategies in Multi-Cloud Architectures: Challenges and Innovations. ISCSITR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (ISCSITR-IJSRAIML) ISSN (Online): 3067-753X, 4(1), 45-60. https://doi.org/10.63397/ISCSITR-IJSRAIML_2023_04_01_004