Architectures of Interpretability in Deep Neural Networks for Transparent Clinical Decision Support in High-Stakes Diagnostic Environments
Keywords:
Deep Neural Networks, Interpretability, Clinical Decision Support Systems, Transparent AI, XAI, Medical Diagnosis, Black-box Models, High-Stakes AIAbstract
The integration of deep neural networks (DNNs) in clinical decision-making systems promises unprecedented accuracy, particularly in complex, high-stakes diagnostic contexts. However, the "black-box" nature of these models poses significant risks, particularly in clinical accountability and ethical transparency. This paper explores emerging architectures and interpretability techniques tailored to clinical contexts. It categorizes state-of-the-art models, benchmarks interpretable AI frameworks, and presents a synthesis of methods validated in real-world diagnostic settings. Insights into trade-offs between transparency and performance are highlighted, along with recommendations for safe deployment.
References
Ribeiro, M.T., Singh, S., Guestrin, C. (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD, 1135–1144.
Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2020). Applying design methodology to software development using WPM method. Journal of Computer
Science Applications and Information Technology, 5(1), 1–8. https://doi.org/10.15226/2474-9257/5/1/00146
Lundberg, S.M., Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. NIPS, 4765–4774.
Selvaraju, R.R., Cogswell, M., Das, A. et al. (2017). Grad-CAM: Visual Explanations from Deep Networks. ICCV, 618–626.
Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C. (2019). This Looks Like That: Interpretable Image Recognition with Prototypes. NeurIPS, 8930–8941.
Simonyan, K., Vedaldi, A., Zisserman, A. (2013). Deep Inside Convolutional Networks. arXiv preprint arXiv:1312.6034.
Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. Journal of Computer Science Applications and
Information Technology, 5(1), 1–7. https://doi.org/10.15226/2474-9257/5/1/00147
Tonekaboni, S., Joshi, S., McCradden, M.D., Goldenberg, A. (2020). What Clinicians Want: ML Interpretability. npj Digital Medicine, 3(1), 1–10.
Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B. (2017). What Do We Need to Build Explainable AI Systems for the Medical Domain? Review of Biomedical Engineering, 18, 2–27.
Lipton, Z.C. (2016). The Mythos of Model Interpretability. arXiv preprint arXiv:1606.03490.
Adari, V. K., Chunduru, V. K., Gonepally, S., Amuda, K. K., & Kumbum, P. K. (2020). Explainability and interpretability in machine learning models. Journal of Computer Science Applications and Information Technology, 5(1), 1–7. https://doi.org/10.15226/2474-9257/5/1/00148
Rajpurkar, P., Irvin, J., Zhu, K. et al. (2017). CheXNet: Radiologist-Level Pneumonia Detection. arXiv preprint arXiv:1711.05225.
Bahdanau, D., Cho, K., Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv preprint arXiv:1409.0473.
Caruana, R., Lou, Y., Gehrke, J. et al. (2015). Intelligible Models for Healthcare. KDD, 1721–1730.
Doshi-Velez, F., Kim, B. (2017). Towards a Rigorous Science of Interpretable Machine Learning. arXiv:1702.08608.
Alvarez-Melis, D., Jaakkola, T.S. (2018). Towards Robust Interpretability with Self-Explaining Neural Networks. NeurIPS, 7775–7784.
Choi, E., Schuetz, A., Stewart, W.F., Sun, J. (2016). Using RNNs for Early Detection of Heart Failure. Scientific Reports, 6, 22259.
Chunduru, V. K., Gonepally, S., Amuda, K. K., Kumbum, P. K., & Adari, V. K. (2021). Real-time optical wireless mobile communication with high physical layer reliability using GRA method. Journal of Computer Science Applications and Information Technology, 6(1), 1–7. https://doi.org/10.15226/2474-9257/6/1/00149
Zech, J.R., Badgeley, M.A., Liu, M. et al. (2018). Variable Generalization in Deep Radiology Models. PLOS Medicine, 15(11), e1002683.
Esteva, A., Kuprel, B., Novoa, R.A. et al. (2017). Dermatologist-level Classification of Skin Cancer. Nature, 542(7639), 115–118.
Amann, J., Blasimme, A., Vayena, E. et al. (2020). Explainability for Artificial Intelligence in Healthcare. Lancet Digital Health, 2(9), e425–e435.
Kelly, C.J., Karthikesalingam, A., Suleyman, M. et al. (2019). Key Challenges for Delivering Clinical Impact with AI. BMC Medicine, 17(1), 195.
Topol, E. (2019). High-performance Medicine: the Convergence of Human and Artificial Intelligence. Nature Medicine, 25(1), 44–56.
McKinney, S.M., Sieniek, M., Godbole, V. et al. (2020). International Evaluation of an AI System for Breast Cancer Screening. Nature, 577, 89–94.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Jakes Willam Frose, (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.