A Polyglot Data Engineering Paradigm for Autonomous Multi-Modal Knowledge Fusion Across Heterogeneous Distributed Data Fabrics
Keywords:
Polyglot data engineering, multi-modal fusion, distributed fabrics, knowledge orchestration, semantic integration, autonomous data pipelines, heterogeneous systemsAbstract
The exponential growth of multi-modal data across distributed infrastructures necessitates a paradigm shift in data engineering methodologies. This paper proposes a novel polyglot data engineering framework that enables autonomous knowledge fusion across heterogeneous data fabrics. By leveraging a multi-model, language-agnostic approach, this architecture supports scalable integration, contextualization, and real-time analytics across disparate systems and modalities. The proposed solution emphasizes semantic interoperability, adaptive orchestration, and cross-platform compatibility. Experimental validation demonstrates increased system agility, reduced latency in knowledge fusion pipelines, and improved coherence in decision-support systems. This research provides a critical foundation for future developments in intelligent, distributed data infrastructures.
References
Stonebraker M, Abadi D J, DeWitt D J, Madden S, Paulson E, Pavlo A, Rasin A. MapReduce and parallel DBMSs: friends or foes? Commun ACM 2010; 53(1):64–71
Gundaboina, A. (2022). Quantum computing and cloud security: Future-proofing healthcare data protection. International Journal for Multidisciplinary Research (IJFMR), 4(4), 1–12. https://doi.org/10.36948/ijfmr.2022.v04i04.61014
DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W. Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Operating Systems Review 2007; 41(6):205–220
Haas L M, Lin E T, Roth M A. Data integration through database federation. IBM Syst J 2008; 41(4):578–596
Uppuluri, V. (2020). Integrating behavioral analytics with clinical trial data to inform vaccination strategies in the U.S. retail sector. Journal of Artificial Intelligence, Machine Learning & Data Science, 1(1), 3024–3030. https://doi.org/10.51219/JAIMLD/vijitha-uppuluri/625
Taylor K, Parsia B, Patel-Schneider P F. OWL: Web Ontology Language. W3C Recommendation. 2012
Ghemawat S, Gobioff H, Leung S T. The Google file system. ACM SIGOPS Oper Syst Rev 2003; 37(5):29–43
Potla, R.B. (2022). Hybrid integration for manufacturing finance: RTR controls, intercompany eliminations, and auditability across multi-ERP estates. ISCSITR–International Journal of ERP and CRM (ISCSITR-IJEC), 3(1), 11–38. https://doi.org/10.63397/ISCSITR-IJEC_03_01_002
Dong X L, Berti-Equille L, Srivastava D. Truth discovery and copying detection in a dynamic world. Proc VLDB Endow 2009; 2(1):562–573
Wang R Y, Madnick S E. A polygen model for heterogeneous database systems: The source tagging perspective. Proc VLDB 1990; 2(1):519–538
Vallemoni, R.K. (2022). Canonical payment data models for merchant acquiring: Merchants, terminals, transactions, fees, and chargebacks. International Journal of Computer Science and Engineering (ISCSITR-IJCSE), 3(1), 42–66. https://doi.org/10.63397/ISCSITR-IJCSE_03_01_006
Abadi D J, Marcus A, Madden S, Hollenbach K. Scalable semantic web data management using vertical partitioning. VLDB J 2007; 17(1):385–406
Bernstein P A, Melnik S, Petropoulos M. Incremental schema matching. In: Proc. ICDE 2006:116–125
Das S, Sundara S, Cyganiak R. R2RML: RDB to RDF mapping language. W3C Recommendation. 2012
Leavitt N. Will NoSQL databases live up to their promise? Computer 2010; 43(2):12–14
Vallemoni, R.K. (2022). Authorization-to-settlement at scale: A reference data architecture for ISO 8583 / ISO 20022 coexistence. Journal of Computer Science and Technology Studies, 4, 88–98. https://doi.org/10.32996/jcsts.2022.4.1.11
Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM 2008; 51(1):107–113
Cattell R. Scalable SQL and NoSQL data stores. ACM SIGMOD Record 2011; 39(4):12–27
Wache H, Vögele T, Visser U, Stuckenschmidt H, Schuster G, Neumann H, Hübner S. Ontology-based integration of information—a survey of existing approaches. In: IJCAI Workshop 2001
Tane J, Schmitz C, Stumme G. Semantic resource management for the web: an ontology-based approach. In: Proc. Web Intelligence 2004:572–575
Etzioni O, Banko M, Soderland S, Weld D S. Open information extraction from the web. Commun ACM 2008; 51(12):68–74
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Daniel Bringston (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





