Exploring Multi-Model Databases for Unified Data Management in Heterogeneous Environments
Keywords:
multi-model databases, heterogeneous data, unified data management, NoSQL, data integration, database architectureAbstract
Modern enterprises increasingly face challenges from data heterogeneity, with structured, semi-structured, and unstructured data residing across disparate systems. Multi-model databases have emerged as a solution to provide unified interfaces for accessing heterogeneous data. This paper explores the motivations, architectures, benchmarks, and evolving challenges of multi-model databases, particularly their role in unified data management. By reviewing foundational literature, the study highlights the conceptual evolution, practical applications, and ongoing challenges in managing diverse data models within a unified system.
References
Lu, J., Holubová, I. (2017). Multi-model Data Management: What's New and What's Next? In EDBT.
Zhang, C., Lu, J., Xu, P., Chen, Y. (2018). UniBench: A benchmark for multi-model database management systems. In TPCTC.
Holubová, I., Svoboda, M., Lu, J. (2019). Unified Management of Multi-model Data: Vision Paper. In ER.
Tan, R., Chirkova, R., Gadepally, V. (2017). Enabling Query Processing Across Heterogeneous Data Models: A Survey. In IEEE Big Data.
Sirimalla A. Autonomous Performance Tuning Framework for Databases Using Python and Machine Learning. J Artif Intell Mach Learn & Data Sci 2023 1(4), 3139-3147. DOI: doi.org/10.51219/JAIMLD/adithya-sirimalla/642
Prabhune, A., Stotzka, R., Sakharkar, V., Hesser, J. (2018). MetaStore: An Adaptive Metadata Framework. Distributed and Parallel Databases, 36(3), 221–241.
Płuciennik, E., Zgorzałek, K. (2017). The Multi-Model Databases–A Review. In BDAS.
Fuchs, S., Scherer, R.J. (2017). Multimodels—Instant nD-modeling using original data. Automation in Construction, 81, 64–78.
Rajhans, A.H. (2013). Multi-model Heterogeneous Verification of Cyber-Physical Systems. PhD Thesis, CMU.
Bruneliere, H., de Kerchove, F.M., Daniel, G. (2018). Scalable Model Views on Heterogeneous Resources. In MODELS.
Wang, Y.R., Madnick, S.E. (1990). A Polygen Model for Heterogeneous Database Systems. MIT CIS Report.
Jing, X., Gang, Y., Min, H. (2011). Intelligent Analysis for Heterogeneous Data Environments. In ICMIMT.
Sirimalla, A. (2022). End-to-end automation for cross-database DevOps deployments: CI/CD pipelines, schema drift detection, and performance regression testing in the cloud. World Journal of Advanced Research and Reviews, 14(3), 871–889. https://doi.org/10.30574/wjarr.2022.14.3.0555
Orlandic, R. (2000). A Layered Multi-Model Design Framework for DBMS. In ISAS.
Lu, J., Liu, Z.H., Xu, P., Zhang, C. (2018). UDBMS: Road to Unification for Multi-model Data. In ER Conference.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Catalina Yeison, Vanesa Ronal (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.