Fair and Accountable AI in Healthcare: Building Trustworthy Models for Decision-Making and Regulatory Compliance
DOI:
https://doi.org/10.63397/ISCSITR-IJCSE_2025_06_03_003Keywords:
Fairness in AI for healthcare, bias mitigation in medical AI, explainable AI, regulatory compliance, HIPAA, CMS, FDA, ethical AI, AI transparency, accountable machine learning, healthcare infrastructure, health insurance AI auditing, Medicare eligibility models, AI governance, data privacy in healthcare, AI-driven decision systems, site reliability engineering in healthcare, observability in medical AI systems, machine learning operations (MLOps), automated compliance monitoring, AI model validation, infrastructure resilience, responsible AI, trustworthy healthcare AIAbstract
While this research aims for mitigating bias, regulation, accountability and transparency in fair and accountable AI in healthcare, these can be extended to other health contexts. It presents the evaluation of frameworks, tools and practices towards increasing trustworthiness of AI based clinical decision making. Leads to the finding that responsible development, infrastructure resilience and continuous auditing are required to adopt ethical and compliant AI development.
References
Lekadir, K., Feragen, A., Fofanah, A. J., Frangi, A. F., Buyx, A., Emelie, A., Lara, A., Porras, A. R., Chan, A., Navarro, A., Glocker, B., Botwe, B. O., Khanal, B., Beger, B., Wu, C. C., Cintas, C., Langlotz, C. P., Rueckert, D., Mzurikwao, D., . . . Starmans, M. P. A. (2023). FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2309.12325
Panigutti, C., Perotti, A., Panisson, A., Bajardi, P., & Pedreschi, D. (2020). FairLens: Auditing Black-box Clinical Decision Support Systems. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2011.04049
Poulain, R., Tarek, M. F. B., & Beheshti, R. (2023). Improving fairness in AI models on electronic health Records: The case for federated Learning Methods. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2305.11386
Ueda, D., Kakinuma, T., Fujita, S., Kamagata, K., Fushimi, Y., Ito, R., Matsui, Y., Nozaki, T., Nakaura, T., Fujima, N., Tatsugami, F., Yanagawa, M., Hirata, K., Yamada, A., Tsuboyama, T., Kawamura, M., Fujioka, T., & Naganawa, S. (2023). Fairness of artificial intelligence in healthcare: review and recommendations. Japanese Journal of Radiology, 42(1), 3–15. https://doi.org/10.1007/s11604-023-01474-3
Petersen, E., Potdevin, Y., Mohammadi, E., Zidowitz, S., Breyer, S., Nowotka, D., ... & Herzog, C. (2022). Responsible and regulatory conform machine learning for medicine: a survey of challenges and solutions. IEEE access, 10, 58375-58418. https://doi.org/10.48550/arXiv.2107.09546
Chinta, S. V., Wang, Z., Zhang, X., Viet, T. D., Kashif, A., Smith, M. A., & Zhang, W. (2024). AI-Driven Healthcare: A survey on ensuring fairness and mitigating bias. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2407.19655
Liefgreen, A., Weinstein, N., Wachter, S., & Mittelstadt, B. (2023). Beyond ideals: why the (medical) AI industry needs to motivate behavioural change in line with fairness and transparency values, and how it can do it. AI & Society, 39(5), 2183–2199. https://doi.org/10.1007/s00146-023-01684-3
Carey, S., Pang, A., & De Kamps, M. (2024). Fairness in AI for healthcare. Future Healthcare Journal, 11(3), 100177. https://doi.org/10.1016/j.fhj.2024.100177
Chettri, S. K., Deka, R. K., & Saikia, M. J. (2025). Bridging the gap in the adoption of trustworthy AI in Indian healthcare: challenges and opportunities. AI, 6(1), 10. https://doi.org/10.3390/ai6010010
Bernal, J., & Mazo, C. (2022). Transparency of Artificial Intelligence in Healthcare: Insights from Professionals in Computing and Healthcare Worldwide. Applied Sciences, 12(20), 10228. https://doi.org/10.3390/app122010228
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vijaybhasker Pagidoju (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.