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Abstract 

The advent of artificial intelligence (AI) has catalyzed transformative shifts across various 

sectors, including very-large-scale integration (VLSI) and semiconductor manufacturing. 

This paper explores the emerging paradigms driven by AI in process control and defect 

detection, which are pivotal to sustaining advancements in semiconductor technology. AI-

driven methodologies have enabled enhanced yield, reduced downtime, and superior defect 

mitigation, ushering in unprecedented precision and scalability. This research paper reviews 

state-of-the-art literature, highlights emerging trends, and discusses the methodologies and 

challenges associated with AI integration in semiconductor manufacturing. Furthermore, it 

presents a comparative analysis of traditional and AI-driven approaches while identifying 

future research trajectories that promise to redefine semiconductor production. 
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1. Introduction  

Semiconductor manufacturing has undergone rapid evolution over the past few decades, 

driven by the increasing demand for high-performance, low-power, and cost-effective 

integrated circuits (ICs). As very-large-scale integration (VLSI) technology progresses, 

process complexity and defect rates have increased, necessitating robust process control and 

defect detection mechanisms. 
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Traditional approaches to process control and defect detection primarily rely on statistical 

process control (SPC), optical inspection, and rule-based automation. However, these 

methods often lack the adaptability and precision needed to maintain optimal yield in 

advanced semiconductor nodes. AI-driven techniques, including machine learning (ML), 

deep learning (DL), and reinforcement learning (RL), have emerged as transformative 

solutions, offering real-time adaptive control, predictive analytics, and self-optimizing defect 

detection models. 

This paper explores the integration of AI-driven techniques in semiconductor 

manufacturing, analyzing their impact on yield enhancement, defect classification, and 

process optimization. Additionally, it highlights key research contributions before 2023 and 

provides a roadmap for future developments. 

 

2. Literature Review 

2.1 AI-based Defect Detection in Semiconductor Manufacturing 

Defect detection is a critical component in semiconductor fabrication, ensuring that defective 

chips are identified and rectified before reaching final production. Traditional optical 

inspection methods rely on predefined rules, making them susceptible to high false-positive 

rates. 

Several studies have proposed AI-based defect detection techniques: 

• Chen et al. (2023) introduced generative adversarial networks (GANs) for defect 

detection in extreme ultraviolet (EUV) lithography, achieving higher accuracy than 

conventional image-processing techniques. 

• Kuo et al. (2021) developed a deep learning-based defect detection framework for 

advanced process nodes, demonstrating significant improvements in wafer yield and 

defect classification accuracy. 

2.2 AI-driven Process Control in Semiconductor Fabrication 

Process control in semiconductor manufacturing requires real-time monitoring and 

adjustment of fabrication parameters. Traditional control mechanisms rely on statistical 

methods, which often struggle to adapt to highly dynamic manufacturing environments. 

• Li et al. (2021) proposed reinforcement learning (RL) techniques for adaptive 

process control in atomic layer deposition (ALD), enabling real-time parameter 

optimization and defect reduction. 

• Yang et al. (2021) explored RL-based process optimization in chemical vapor 

deposition (CVD), demonstrating improved deposition uniformity and throughput. 
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Table 1: Comparison of Traditional vs. AI-driven Process Control Techniques 

Feature Traditional Control AI-driven Control 

Adaptability Limited High 

Real-time Processing Moderate Fast 

Yield Improvement Marginal Significant 

Error Handling Rule-based Predictive & Self-Correcting 

 

3. AI-Driven Process Control in Semiconductor Manufacturing 

AI-driven process control introduces self-learning mechanisms that optimize fabrication 

parameters based on real-time feedback. This significantly reduces process variations and 

improves overall yield. 

3.1 Reinforcement Learning for Process Control 

Reinforcement learning has been widely explored in semiconductor process optimization. 

Unlike traditional control methods that rely on predefined rules, RL-based approaches 

dynamically adjust process parameters based on historical data and real-time feedback. 

• Kim et al. (2022) applied RL for robust process control in chemical-mechanical 

planarization (CMP), reducing material wastage and improving process stability. 

• Park & Han (2020) demonstrated how ML models can predict yield deviations and 

dynamically adjust manufacturing parameters. 

 

 
Figure 1: AI-driven Process Control Workflow 
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4. AI-Based Defect Detection Techniques 

AI-driven defect detection models utilize deep learning and ensemble learning to classify 

defects more accurately than traditional methods. These models learn from large datasets 

and continuously improve defect identification accuracy. 

4.1 Machine Learning and Deep Learning for Defect Classification 

• Zhou et al. (2022) applied ensemble machine learning models for defect 

classification, achieving 98% classification accuracy compared to 85% for 

conventional methods. 

• Wang et al. (2021) used LSTM networks for defect pattern prediction in 

semiconductor manufacturing, allowing proactive defect mitigation. 

 

5. Future Challenges and Research Directions 

5.1 Challenges in AI Integration for Semiconductor Manufacturing 

Despite the promising advantages of AI-driven techniques, several challenges hinder 

widespread adoption: 

• Data Availability and Quality: AI models require high-quality, labeled datasets for 

training, which are often limited in semiconductor manufacturing. 

• Computational Complexity: AI models demand high computational resources, 

making real-time inference challenging. 

• Model Interpretability: Many AI models, particularly deep learning models, lack 

explainability, making it difficult for engineers to trust automated decisions. 

5.2 Future Research Directions 

• Federated Learning for Secure AI-driven Manufacturing: Decentralized learning 

methods can enable AI-driven defect detection without exposing sensitive 

manufacturing data. 

• Hybrid AI Models: Combining rule-based and AI-driven techniques can improve 

process reliability. 

• Edge AI for Real-time Defect Detection: Deploying AI models at the edge can enable 

faster decision-making in semiconductor fabrication lines. 

 

6. Conclusion 

AI-driven automation in semiconductor manufacturing is revolutionizing process control 

and defect detection, offering unprecedented efficiency, adaptability, and accuracy. This 

paper explored key AI-driven methodologies and reviewed significant research 

contributions before 2023. While AI provides significant improvements in yield optimization 

and defect mitigation, challenges related to data availability, computational resources, and 

model interpretability remain. Future research must focus on federated learning, hybrid AI 

models, and edge AI deployment to further enhance AI integration in semiconductor 

manufacturing. 
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