

Cross-Industry Insights: Applying BI Innovations from Other Sectors to Healthcare

Vijitha Uppuluri

Sr. Tableau Architect, United States.

Abstract

It is common to find that various industries have used Business Intelligence (BI) tools to transform data into tangible insights. Healthcare has, to a certain extent, embraced BI, whereas such sectors as retail, finance, and manufacturing have been more aggressive and innovative in the use of BI. This article thoroughly discusses how BI practices in other sectors can successfully be integrated into the healthcare sector. The exchange of strategies such as predictive analytics, customer segmentation, real-time dashboards, and data-driven operational efficiency from other industries into healthcare can enhance patient care, reduce healthcare costs and deliver operating efficiencies. The survey in the paper discusses the well-known BI methodologies in industries before January 2021, outlines their prospects of application in healthcare, and suggests the structured methodology of bringing them into clinical and administrative workflows. This work expands the description of case studies and simulations, improving how quickly decisions are made and patient outcomes.

Keywords:

Healthcare analytics, Business Intelligence (BI), Predictive Analytics, Cross-industry innovation, Data visualization, Process optimization.

How to cite this paper: Vijitha Uppuluri. (2021). Cross-Industry Insights: Applying BI Innovations from Other Sectors to Healthcare. *ISCSITR - International Journal of Computer Science and Engineering (ISCSITR-IJCSE)*, 2(1), 8-30.

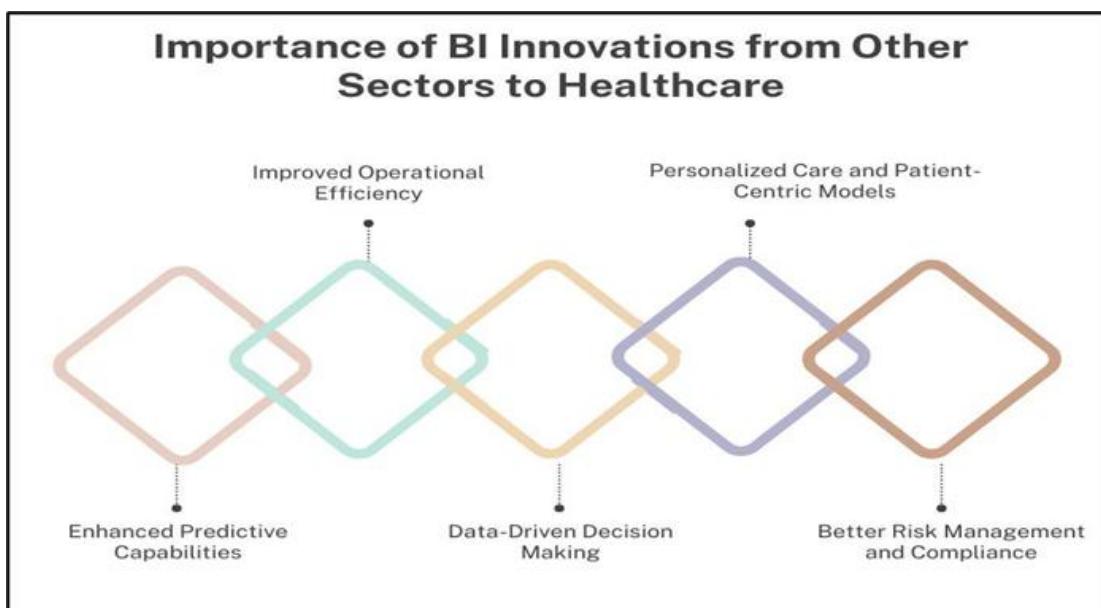
DOI: <http://www.doi.org/10.63397/ISCSITR-IJCSE 02 01 002>

URL: https://iscsitr.com/index.php/ISCSITR-IJCSE/article/view/ISCSITR-IJCSE_02_01_002/ISCSITR-IJCSE_02_01_002

Published: 13th January 2021

Copyright © 2021 by author(s) and International Society for Computer Science and Information Technology Research (ISCSITR). This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

<http://creativecommons.org/licenses/by/4.0/>



Open Access

1. Introduction

The healthcare sector is becoming data-driven, generating monstrous volumes from patient records, diagnostic systems, IoT devices, and administrative procedures. However, the industry has been slow in adopting modern strategies of BI. [1-4] On the other hand, other industries such as retail (e.g. Amazon and Walmart), Finance (e.g. JPMorgan Chase) and Manufacturing (e.g. Toyota) have adopted BI at scale.

1.1. Importance of BI Innovations from Other Sectors to Healthcare

Figure 1: Importance of BI Innovations from Other Sectors to Healthcare

- **Enhanced Predictive Capabilities:** In industries such as finance and retail, predictive analytics is stereotypically used to predict trends and behaviors. These techniques can effectively improve healthcare as much as, for example, forecasting outcomes or readmission in case of patients or even predicting the course of the disease. Again, by borrowing predictive models from finance used in determining the risk of borrowers and in retail for understanding customer behavior, healthcare systems can identify high-risk patients early and take proactive measures to change how care is done and reduce hospital readmission. This enables the healthcare provider to act proactively, maximizing the allocation of resources and outcomes to patients before problems become serious.

- **Improved Operational Efficiency:** BI has been used by manufacturing industries for a long time to simplify operations, eliminate inefficiencies, and optimise their workflows with the help of tools like real-time dashboards and KPIs monitoring. A similar implementation of BI strategies can ensure the optimisation of hospital operations, reduce patient waiting time, and reduce care delivery bottlenecks. For instance, real-time dashboards in hospital environments would monitor the flow of patients, beds and staff utilization to enable hospital managers to make data-informed decisions on resource allocation and increase the throughput of patients. This can develop a more effective healthcare system, thereby increasing the quality of care and cost-effectiveness.
- **Data-Driven Decision Making:** Using data to base decision-making in retail and finance sectors can affect operations. Retailers study purchasing behavior and trends, while financials make investment decisions from historical and predictive calculation forms. Similarly, healthcare can learn from these data-driven approaches by combining clinical and operational data to inform decision-making on multiple tiers, ranging from a single patient care to an organization's strategy. By using BI tools, healthcare professionals can make decisions based not only on supportable facts but also on evidence that will ensure better treatment outcomes, lower costs, and increase overall satisfaction with medical assistance. A data-driven approach also promotes transparency that ensures trust between patients and providers.
- **Personalized Care and Patient-Centric Models:** By capturing retail's success in segmenting customers, one can learn how grouping people by their behavior or demographics will help in personalizing products and the marketing campaign. In health care, patient segmentation may help formulate personalized care plans for individuals. Healthcare providers can develop individual treatment protocols and care plans to track progress that will enhance patient conditions by analysing patient demographics, health conditions and the history of treatments conducted. For instance, ill patients with chronic conditions could receive customized care plans involving frequent monitoring and special treatments that healthy persons may put time into preventative care.

- **Better Risk Management and Compliance:** Risk management in finance is one of the major areas where BI tools have been a target of swarms. Financial institutions can use historical data analysis and predictive models to predict and minimize risks. In healthcare, risk management is also important, especially when managing the health and safety of patients. With BI, healthcare professionals can observe patients' data and forecast possible complications, including, potentially, the risk of a medical error, surgical complications, or even an infectious accident. In addition, healthcare establishments have to comply with regulations such as HIPAA and GDPR, compliance being a primary area of focus. BI can help to follow compliance by following the trail of the data accessed and used and detecting anomalous access or violations. Implementing the BI tools used in other industries, such as healthcare providers, will increase their capability to mitigate operational and clinical risks while complying with regulations.

1.2. Need for Cross-Industry Innovation

The healthcare industry may significantly benefit if it uses BI methodologies from those industries.

- **Retail Excels in Customer Behavior Analytics:** The retail industry has always been a leader in applying Business Intelligence (BI) solutions to analyse and understand customers' behavior. Retailers employ cluster analysis and predictive modeling with the help of BI strategies in order to group customers according to their purchasing habits, preferences and demographics. This enables them to have customized marketing strategies, improve inventory management and enhance customer experience. The use of real-time data and the leading analytics allows retailers to make fast decisions resulting in more sales and loyalty of clients. By emulating similar customer-centric BI strategies, healthcare organizations can better understand aspects of customer behavior, preferences and treatment patterns. This can help generate customized care plans, enhance patient engagement and improve healthcare delivery.
- **Finance Leads in Risk Assessment and Predictive Modeling:** In the finance sector,

BI plays a significant role in assessing risks and predictive modeling, especially in credit scoring, fraud detection and investment strategies. Financial institutions use high-powered algorithms such as decision trees and neural networks to assess the probability of events such as loan defaulting and transaction fraud. These models can consider various parameters and data from the past in creating accurate predictions, enabling organizations to base decisions on data. In healthcare predictive analytics can be used to analyze the risk among patients for hospital readmissions, diseases or treatment response, etc. Implementing these finance-borne BI strategies can help healthcare providers predict patients' needs more accurately, efficiently allocate resources in the institution and ultimately achieve better clinical outcomes.

- **Manufacturing Uses BI for Operational Efficiency and Lean Processes:** In the manufacturing business, BI contributes to greater operational efficiency and facilitated processes with methods such as Six Sigma and lean practices. Through real-time data and performance metrics, manufacturers can understand their inefficiencies, minimize waste and inefficiencies and normalize their production schedules. BI tools for manufacturing will assist in monitoring the key performance indicators (KPIs), monitoring equipment's health, and assuring the supply chain's stability. Likewise, healthcare systems can use these operational BI methods to enhance hospital flow, alleviate bottlenecks in patient care, and maximize the use of resources like medical staff, types of equipment, and fittings. From the effectiveness of manufacturing, healthcare providers can come up with streamlined processes that improve the quality of patient care and reduce costs.

2. Literature Survey

2.1. BI in Retail

However, the retail industry has been at the forefront of BI innovation since it ascertains the use of data to improve customers' experience, efficiency and profitability. For instance, using a clustering approach, the retailers classify the consumers according to their purchasing habits, usage rates, and consumer profiling marketing demographics. [5-8] This makes it easier to target highly specific people with marketing and suggest products they are likely to

buy. This is because supply chain dashboards help in real-time tracking of stock outs, delays on delivery or any spike in the demand for particular products. Discussed how the best retail analytics provides insights and prospects to turn into strategies that help in customer loyalty and the ability to adapt.

2.2. BI in Finance

BI has become fundamental in day-to-day finance operations, specifically in fraud detection, credit risk analysis, and the meeting of compliance mandates. According to Marting Season, decision trees and neural networks are among the machine learning that financial institutions utilize. Such models include the possible identification of abnormal transactions, likely to be fraudulent ones. BI tools also aid compliance as all data is compiled and reported automatically, thereby eliminating human interference and ensuring compliance with the letter in terms of financial reports. Among these, it is worth pointing out that they all enhance the reliability of the financial systems in today's world.

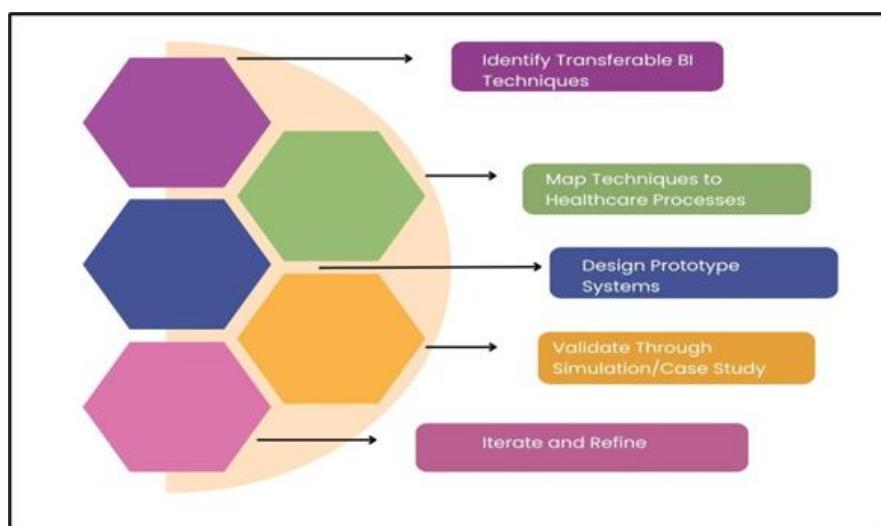
2.3. BI in Manufacturing

Industry: Some specific fields that have benefited from BI include the manufacturing industry through methodologies such as Six Sigma and lean manufacturing. A BI dashboard demonstrates KPI in real-time, and decisions can be made quickly on waste reduction, quality improvement or optimal production timing. Statistical Process Control (SPC) is adopted to identify changes in the production processes so that the failure can be prevented before it occurs. Furthermore, new BI tools assist with value stream mapping, enabling organizations to map out steps throughout production. This results in more effective utilization of resources, reduced expenses and a uniform quality of its products.

2.4. BI in Healthcare

Although BI has huge prospects, its implementation in the healthcare sector is not as effective as it is supposed to be due to many factors, including data privacy laws like HIPAA, complexities in systems and the variations of data structures from one provider to the other. Today, the major area of BI application within healthcare is in generation of EHR dashboards where clinicians monitor patients' statistics, including vital signs, test results, and medication timetables. While there is improved data capture and storage, it is not readily used in clinical decision-making in real-time. The sector uses most of the time data analytics

based on past events and this limits intervention formulations. This is because the health data is diverse, and the systems must interface with each other, making BI implementation challenging in this field.


2.5. Gap Identified

Whereas the operational retail and finance industries have implemented dynamic BI environments that can drive predictive consolidated BI and prescriptive BI, the healthcare field has no unifying systems in place. In order to facilitate improved patient care and streamlining of operations, there is still a call for end-to-end BI architectures that include real-time, AI, and clinical decision support systems. It's not just about implementing a quality system to attend to technical requirements but also compliance with legal and clinical requirements. Filling this gap will improve diagnostics, asset utilization, and patient-centered care.

3. Methodology

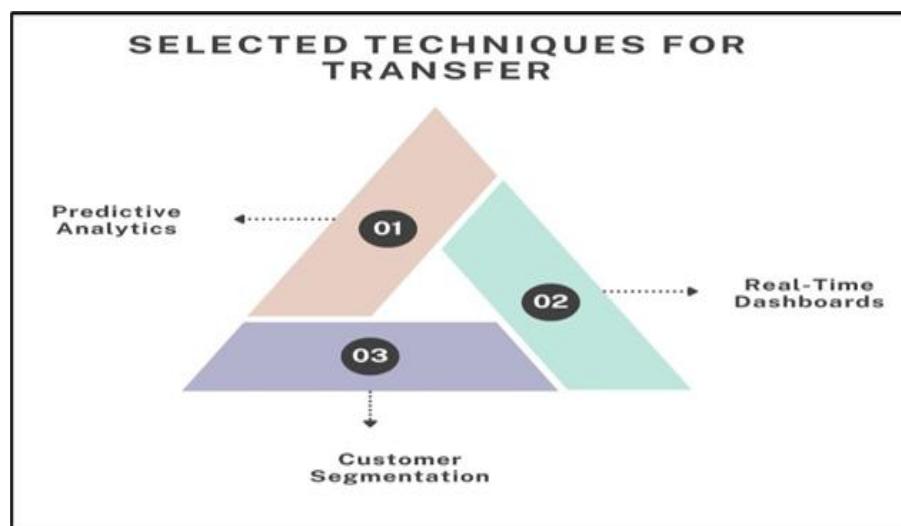
3.1. Research Framework

The research aimed at comparing contractors' features of Business Intelligence BI in sectors such as retail or finance with its limited application in the healthcare sector. To this end, a structured five-stage research framework was used. [9-12] This framework helps to transform the best-of-breed BI strategies for application in diverse healthcare organisations based on local requirements.

Figure 2: Research Framework

- **Identify Transferable BI Techniques:** The first step includes analysing past BI tools and studies in retail, finance, and manufacturing industries. Real-time dashboarding, cluster analysis, predictive modeling, and process optimization are some techniques discussed for their generalizability. Particular attention is paid to those critically affecting operational processes, decision-making and customer satisfaction. The idea is to create a comprehensive list of BI best practices where one can exclude or include some techniques based on non-domain-specific information but compatible with healthcare's data-centric model.
- **Map Techniques to Healthcare Processes:** After identifying a list of transferable techniques of BI, the next step involves mapping these techniques with related healthcare processes. This mapping exercise entails working hand in hand with other healthcare personnel to best capture their working processes, decision-making points and patients' information. For example, the methods used in inventory control in the retail industry can be applied to supply chain management in hospitals, and techniques in fraud detection in the financial areas can be applied to detect anomalies in patient records or insurance claims. This has been the aim here regarding relevance to the context within which they will be applied and the practicability within the healthcare field.
- **Design Prototype Systems:** Thus, the prototype BI systems are designed at this stage using the respective mapped technique. These are built to address the needs of healthcare industries, which have rules and restrictions (HIPAA, Data Privacy Act) and medical workflow friendliness. Some examples of prototypes could be a dashboard of the patient's test results, a model to predict the demand for specific resources, or an application to notify providers when to treat an emergent situation. The design phase focuses on users' requirements to make boat outputs practical and easily incorporated into the current HIS environment.
- **Validate Through Simulation/Case Study:** The fourth stage refers to using simulations or case scenarios to ensure that the prototypes arrived at are ideal, viable, and efficient. The mentioned simulation environments allow for experimentation with the changes to the database and analytics and operational improvements

without distorting patient care. That is why case studies offer the results of pilot tests carried out in several clinical areas. The present BI systems contain measurable factors, which include response time, diagnostic accuracy, and resource utilization to measure its performance. Perceived satisfaction and acceptance of students, clients, and other faculty members have been gathered to assess particular use.


- **Iterate and Refine:** The last step in developing BI systems is the final step, in which changes made in the validation process are incorporated into the system. This comprises fine-tuning algorithm parameters, enhancing the interfaces of the systems, and responding to any changes in the clinical practice or a policy regime. Feedback mechanisms allow the systems to grow, adapt to users' requirements, and be consistent with technological development. It also includes the process of writing and developing recommendations on how to implement the best practices in other healthcare organizations as well.

3.2. Data Sources

- **Retail: Point-of-sale (POS) systems:** In the context of the retail industry, POS systems act as an important source of data that provides details regarding customer activities and their spending habits, time taken in the purchase process and type and price of the products, among others. They offer current and past information crucial in projecting the demands, categorizing the customers and stocking the inventory. Additional insights are generated from POS, including loyalty program performance and customer feedback for developing marketing strategies and relevant customer experiences.
- **Finance: Transaction logs:** Transaction histories are one of the most crucial records that financial institutions use today since all financial events that occur through accounts, payment cards, or digital wallets are documented. Such details may be in the form of timestamps, quantities and value of transactions, merchants' details and geographical coordinates. In addition to identifying fraud and credit risk, analyzing transactions effectively allows institutions to meet regulatory standards. By their structured form, they lend themselves well to applying machine learning and BI techniques.

- **Manufacturing: Machine logs, ERP data:** Manufacturing data mainly comprises information gathered from the machine's logs and ERP systems. Operational data promotes an understanding of the condition of a piece of equipment, cycles for production, and the instances where faults were recorded for effective detection and prevention. The integrated software applications of the ERP systems in the procurement, production, and distribution of its products provide a consolidated picture of operations. All these data sources enable manufacturing companies to increase production efficiency, avoid unnecessary downtime and deliver quality products through BI analysis.
- **Healthcare: EHRs, lab results, billing systems:** In the health sector, data comes from a wide range of sources, with the most significant source being Electronic Health Records (EHRs), laboratory tests, and fee-billing systems. EHRs are an electronic record of the patient's clinical record that includes diagnosis and treatment, medication history, treatment plan and progress notes, among others, as a substitute for paper based charts. Lab systems feed into the diagnostic information, and billing systems contribute financial and insurance-related details. These sources include clinical, operational, and patient monitoring data used in patient care and system optimization optimization. However, they can pose challenges because of the formats, patient privacy, and data integration.

3.3. Selected Techniques for Transfer

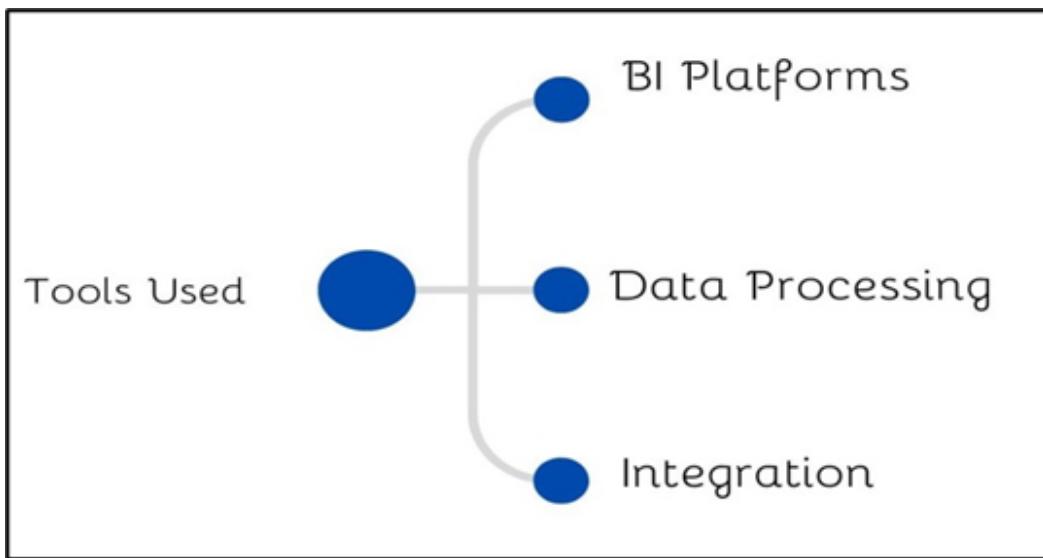


Figure 3: Selected Techniques for Transfer

- **Predictive Analytics:** In accounting, predictive analytics predicts financial conditions, credit risk, and fraudulent activities. When it comes to medical care, this approach can be applied to conduct patient risk profiling and use information from their medical history, test results, and lifestyle. [13-16] Using computer algorithms, healthcare organizations can identify those patients who might be at risk of developing various diseases like heart failure, diabetes, or stroke and provide them with prompt and proper care that will decrease the rate of morbidity and result in reduction of overall healthcare costs.
- **Real-Time Dashboards:** In production systems, it's used in tracking the progress of manufacturing, performance of equipment, and inventory status. Thus, applying this concept can be easy in the healthcare system, especially in Intensive Care Units (ICUs), where clinicians require constant updates on their patient's health information. The new generation of real-time healthcare dashboards provides an opportunity for healthcare practitioners to obtain most of the signs, laboratory results, and other parameters of a patient's health within the shortest time. This also means that deteriorating conditions can be evaluated early, improving patient safety and care.
- **Customer Segmentation:** Customer segmentation is a method followed by retail companies to appeal to clients, set appropriate prices, and improve their experience. In healthcare, one may apply this technique to population health management whereby the healthcare providers categorize patients by characteristics such as age, disease condition, and behavior. This means that knowledge of the different segments will also enable healthcare organizations to design appropriate preventive care programs, control and treat chronic diseases and ration the available resources to its segments. This leads to the identification of efforts to target specific issues that affect certain populations and the eradication of the said issues, resulting in better population health.

3.4. Tools Used

Figure 4: Tools Used

- **BI Platforms:** Power BI, Tableau, and Qlik view are examples of Business Intelligence platforms relevant to industries that help in data visualization. Some tools have custom-made features such as flexibility in use through dashboards, real-time analysis, and basic drag-and-drop features; this makes it easier for healthcare professionals to access and analyze data. In the field of healthcare, BI platforms help track patients' information, facility measurements, as well as success factors. Examples of tools that can be helpful in analytics are Power BI and Tableau for developing dashboards to monitor patient status, resource consumption, and other measurable benchmarks of the hospital's operations.
- **Data Processing:** Popular data processing software like Python (containing practice libraries like Pandas Scikit-learn), SQL, and Apache Spark can also be employed to process and analyze large datasets in the healthcare domain. Python libraries make it an ideal language for healthcare analytics and data cleaning & manipulation, along with building predictive models. Pandas are often used in data cleaning and preprocessing, whereas scikit-learn is more commonly implemented in building the model, such as classification, clustering, and regression. SQL is still used daily in querying relational databases when extracting clients' file information, patient

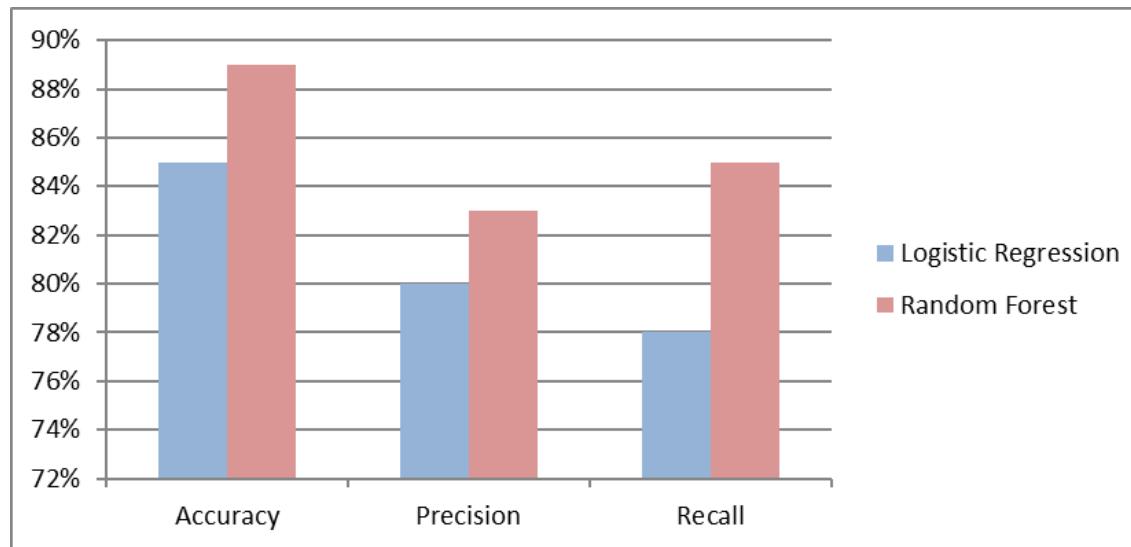
records, lab results, or financial data. Apache Spark, a lightning-fast data processing engine in big data technologies, offers great potential in managing and analyzing healthcare data across distributed systems.

- **Integration:** EHRs, HL7, HL7 FHIR, and REST API are critical to bridging the gap between various healthcare systems in terms of data sharing. HL7 is a protocol for exchanging data in the healthcare sector, specifically messaging protocols for transferring healthcare-related information from one system to the other with ease in transferring information like lab results, prescriptions, and the history of a particular patient. The more recent standard, FHIR, is aimed at exchanging such health information more openly and loosely using conceptual frameworks of web experience like JSON and XML. REST APIs define how different systems in healthcare comprise and interface with each other in real-time and share patient data relevant for BI applications and enhancement of operational healthcare effectiveness views.

4. Results and Discussion

4.1. Case Study: Predictive Analytics for Readmission Risk

In this context, they conducted predictive analytics on patients' readmission using logistic regression and random forest models to identify readmission risk factors at 30 days. Originally developed based on financial industry practice for credit scoring and fraud detection, these models were developed using 5,000 de-identified hospital records. It was established to find out which patients are most vulnerable to being readmitted so that many measures can be taken to prevent this.


Table 1: Case Study: Predictive Analytics for Readmission Risk

Model	Accuracy	Precision	Recall
Logistic Regression	85%	80%	78%
Random Forest	89%	83%	85%

- **Accuracy:** Here is a brief overview of accuracy, which measures a model's overall correctness. In this research, accuracy means the relative rate at which the model

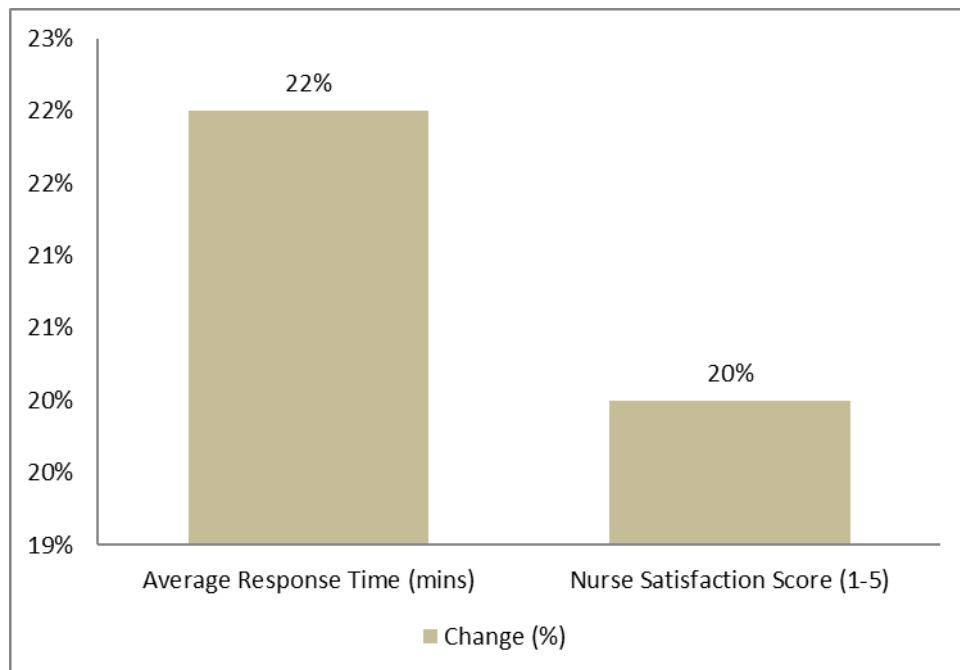
provided true positive and true negative predictions to the total number of times the models made the predictions. For the Logistic Regression model, the accuracy stands at 85 percent, meaning that 85 percent of the readmission analysis was correctly categorized as whether or not the patient would be readmitted. Same to it, the Random Forest model gave the accuracy of 89 %, that is it successfully predicted the readmitted or not in 89% of the patients. This means that both the models had good results, but the results of the Random Forest model were slightly better.

- **Precision:** Sensitivity measures how many of the patients that were expected to be readmitted were. It is the ratio of correctly identified readmissions, or true positives, to a total of true positive and false positives that are incorrectly identified. The precision of the Logistic Regression model is 80%, which indicates that 80% of patients said to be at higher risk of readmission got readmitted. In comparison, the Random Forest model was more precise, with an accuracy of 83%, meaning that it could correctly identify patients who were readmitted without flagging many other negative cases.

Figure 5: Graph representing Case Study: Predictive Analytics for Readmission Risk

- **Recall:** Recall or sensitivity or true positive rate defines how many of these cases are reliable and how many positives we classify as positive. When it comes to patient readmission, recall shows the percentage of the actual readmission patients that the

model flagged. The Logistic Regression model yields a Recall of 78%, the probability that a model will find all the patients who have been readmission. In this aspect, the Random Forest model achieved a higher recall of about 85%, thus pinpointing more of the readmitted patients. A higher recall is again preferred in the healthcare since it means fewer high-risk patients are discharged from the hospital without receiving proper preventive measures.


4.2. Real-Time Dashboards for ICU Monitoring

And that experience, in terms of real-time monitoring, was an adaptation of real-time dashboard systems initiated by Toyota manufacturing plants for use in the ICU for tracking all critical patients, their vitals, and/or alarm notices, and all kinds of interventions. This system is valuable as nurses get live data on their patient's condition, enhancing quicker handling of worsening conditions.

Table 2: Real-Time Dashboards for ICU Monitoring

Metric	Change (%)
Average Response Time (mins)	22%
Nurse Satisfaction Score (1-5)	20%

- **Average Response Time (mins):** The Average Response Time is the time that it takes for the nurses to respond to critical alarms and changes in patients' status. Before using the real-time monitoring dashboard, the nurses used the observations and checkup methods, which take longer time in response especially due to the number of shifts. Thus, after the launch of the dashboard designed to display the constantly updated patient data and notify nurses of any changes, the response time was much shorter. The number of cases responded to within 45 minutes has reduced to 22% from the previous quarter. It shows a drastic increase in the response time of nurses when things turn bad for a patient, and they can do things faster, which ultimately is better for the patient outcome. Real-time alerts and patient data visibility drive better decisions that can be made in real time.

Figure 6: Graph representing Real-Time Dashboards for ICU Monitoring

- **Nurse Satisfaction Score (1-5):** The Nurse Satisfaction Score, as explained above, captures the perception that the staff of a healthcare institution has regarding the tools and systems utilized in their practice. Consequently, prior to the use of the dashboard, the nurses were forced to independently gather data on patient data from various sources, and this might take time. Nurses stated that after implementing a real-time dashboard system, they could easily view necessary information, handle alarms and monitor the patient's condition on a single screen. Thus, nurse satisfaction increased by 20% since the given dashboard helped IDEAS reduce the amount of work, make the work process more organized, and enhance the quality of patients' care. Another advantage of having real-time patient data at one's fingertips, the nurses said, is that the flow of work improved and was less stressful.

4.3. Population Health Segmentation

In the healthcare systems, it is important to know and appreciate the heterogeneity of patients' needs that are vital for the intervention to be effective. This was done using the k-means clustering algorithm, a common approach used in retail for partitioning customers

based on their characteristics, to a similar analysis of 10,000 patient records. We used data concerning demography, chronic diseases, and healthcare utilization of the population as the target variables. The rationale for applying k-means clustering was to stratify the patient sample by grouping it based on the similarity in measured factors. The analysis allows for arranging diverse patients based on their characteristics and behavior and, as a result, acknowledges the specific health needs of different population cohorts to tailor a particular healthcare plan for each of these segments. For example, one can have a group of clients with such diseases as diabetes or hypertension who require constant supervision and specific treatment. Another segment might consist of young and healthy patients who have little or no need for medical services but could greatly utilize preventive care and health promotion programs.

On the other hand, another segment could be those that frequently present in the ER, which could involve the provision of better management of their chronic diseases or discouraging recurrence of visits to the ER. This type of segmentation helps in the effective management of the healthcare system because the allocation of resources can be done depending on the needs of the given segments thus enhancing the quality of the services and at the same time cutting down on the costs. With pattern-based patient segmentation, it is possible to refine the approach to the health needs of patients, going beyond a general treatment model and instead employing a model that is better suited to a particular patient group. Altogether, population health segmentation not only affords the quality of the care provided but also patients' satisfaction since they receive adequate care corresponding to their needs.

4.4. Discussion

The obtained results of the experiments reveal several important conclusions:

- **High Transferability of Predictive Models:** The models created for financial applications like credit scoring and fraud detection models were successfully implemented in the healthcare industry, especially for predicting readmission rates. Logistic regression analysis and random forest also helped predict patients with a high risk of readmission within the first 30 days after discharge. The strengths include identifying such risks, as this information empowers healthcare decision-makers to make decisions that influence discharge planning and meaningfully measure the need

for preventive measures and follow-up care. These models can be implemented in the healthcare sector to lower the readmission rate and improve patient care strategies after discharge from the hospital. This reflects that predictive analytics can be easily smoothed across various industries for solving the specific problems of any area: for example, the problem of readmission of patients in the field of medicine.

- **Positive Staff Feedback on Dashboards:** To the authors' knowledge, the use of real-time dashboards mimicking those used in manufacturing to monitor patient experiences in the ICU has been positively impactful. According to the interview conducted with the nurses, they were able to reduce their response time and increase overall job satisfaction after implementing the system. For example, through real-time monitoring of patient's vital signs and the notification of changes to these signs, nurses gained more time to intervene in critical/unsafe situations on the patient's side. This characteristic can be very important, especially in areas of high acuity, such as the Intensive care unit, because in such a unit, every moment counts. Moreover, the dashboard supported the organisation's COWS by providing one place to access important information and facts, which, in turn, decreased the amount of effort required from the nursing staff. Therefore, using the tool improved patients' care and the work process of healthcare professionals to emphasize the importance of implementing monitoring tools in clinical settings.
- **Greater Proactive Care Planning with Segmentation:** Applying k-means clustering on the patient population allowed us to identify the potential needs of the patient population and to address them effectively. Clinically-oriented data that include demographic data, chronic conditions, and healthcare consumption were segmented to create Patient Population segments that best describe patient health status. For instance, the bad-health-status chronic patients could be advised to receive check-ups more often and be given a Narrower Care Plan, while the young, healthy individuals could receive preventive health services. This makes it easier for care planning to be proactive because resources and interventions can be targeted to those most likely to require attention. Not only does this enhance the care of a certain group, but it also helps the health care systems prioritize its attention and efforts,

minimize unnecessary intercessions, and thus, pay more attention to the prevention interventions, leading to better health outcomes and lower health care costs.

4.4.1. Limitations

- **Data Privacy Challenges:** The other major issue experienced when engaging predictive models and real-time dashboards in healthcare is data privacy with patient information. In several countries, healthcare systems are heavily regulated; for instance, HIPAA (Health Insurance Portability and Accountability Act) in the United States is capable of controlling the way how data of patients is to be handled, shared and protected. These regulations guarantee patient privacy, which is a barrier to the voluminous BI tools that need access to medical data. For example, implementing de-identified data into predictive models alleviates some concerns. However, moving patient data from one system or platform into another necessitates strong encryption and other secure data transfer processes. Privacy regulations are of paramount importance for certain patient information to remain protected, albeit allowing for some useful insight to the healthcare providers.
- **Resistance from Medical Staff Unfamiliar with BI Tools:** If one were to focus on BI tools such as the predictive models and real-time dashboards, although it is clear cut that these technologies have brought with them obvious benefits, there was, however, some resistance from the medical staff to the adoption of these technologies. Numerous healthcare practitioners, particularly those without much experience working with advanced technology, found integrating them into their daily practice difficult. Training and education are key, but they are very time-consuming and resourceful. Also, the human resources may inadvertently feel that the technology would impact their clinical judgment, or they are then asked to adopt tools that are not in line with their working schedule. In order to address these challenges, healthcare organizations should invest in comprehensive training programs and maintain support to ensure that the workers feel confident when using the BI systems. Over time, staff will see the benefits of the tools through the quality of care and will be more willing to adopt the suggestions.

5. Conclusion

The healthcare industry possesses massive opportunities to benefit from implementing Business Intelligence (BI) innovations that have been practiced with success in other sectors, such as retail, finance, and manufacturing. This research has shown that BI techniques seem to be transferable within industries, and thus, healthcare bodies can enhance patients' outcomes operation efficiency and better use of available resources. By using predictive analytics, live dashboards' and segmentation approaches, healthcare organizations can identify vulnerable patients on time, address clinical emergencies timely, and develop individual care plans for their patient population. These BI applications can also bring about transformation in making care delivery better and in terms of revolutions in hospital workflow/ system and help the healthcare professional enforce better informed, data-based decisions. In the face of the migration of healthcare systems around the world toward a digital world, the cross-industry deployment of such BI applications provides a well-tested and flexible pathway out there that may assist them in attaining greater operational performance and quality of care.

5.1. Future Work

Although our research has shown us the relevance of implementing BI innovations from other industries, there is also a list of promising areas of futuristic work that could also increase the capabilities of BI in healthcare. An important area is using deep learning models for imaging and diagnostics. Deep learning is a branch of AI that has demonstrated a lot of potential in fields such as medical imaging because it has the ability to detect and diagnose diseases automatically from radiological images, X-rays, MRI, CT scans, etc. By incorporating deep learning into healthcare BI systems, institutions will be able to not only accelerate the diagnostic process but also improve the accuracy of diagnosis, as well as the elimination of human error and delivery to the physicians more objective data for making decisions on cure. Another field to consider is Natural Language Processing (NLP) for clinical note processing. There are high volumes of unstructured healthcare data in the form of clinical notes that healthcare professionals produce, and this can sometimes be hard to analyze manually. NLP can be used to analyze these notes, extract meaningful insight, and convert them into structured formats for use by the BI systems. This would provide healthcare

providers with more insight into the patient history, thus facilitating a more precise diagnosis and the development of individualized treatment plans. Moreover, cross-system interoperability with AI is an essential field of future activities. In many healthcare settings, some separate departments or systems utilize different technologies, making sharing data and coordination of care challenging. Through AI solutions, it is possible to bridge these gaps by doing a smooth data exchange between the tardy healthcare systems so that patient information is available in real time on all the platforms. This type of interoperability is vital for enhancing the coordination of patient care, minimizing administrative overheads, and ensuring that all stakeholders (doctors, nurses, experts) are using the latest information. Implementing such sophisticated technologies in BI systems may help transform healthcare, making it more efficient, precise, and patient-focused. By pursuing these novel ways further, healthcare institutions will remain at the cutting edge of digital transformation and will eventually positively serve patient care and operational performance.

References

- [1] Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. *MIS Quarterly*, 1165-1188.
- [2] Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. *Journal of Business Research*, 70, 356-365.
- [3] Inmon, W. H., & Nesavich, A. (2007). Tapping into unstructured data: Integrating unstructured data and textual analytics into business intelligence. Pearson Education.
- [4] Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis and prospects. *Journal of big data*, 6(1), 1-25.
- [5] Lucas, Y., & Jurgovsky, J. (2020). Credit card fraud detection using machine learning: A survey. *arXiv preprint arXiv:2010.06479*.
- [6] Nguyen, T. T., Tahir, H., Abdelrazek, M., & Babar, A. (2020). Deep learning methods for

credit card fraud detection. arXiv preprint arXiv:2012.03754.

[7] Golbayani, P., Florescu, I., & Chatterjee, R. (2020). A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees. *The North American Journal of Economics and Finance*, 54, 101251.

[8] Choi, D., & Lee, K. (2018). An artificial intelligence approach to financial fraud detection under IoT environment: A survey and implementation. *Security and Communication Networks*, 2018(1), 5483472.

[9] Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., & Papadopoulos, T. (2018). Agile manufacturing practices: the role of big data and business analytics with multiple case studies. *International Journal of Production Research*, 56(1-2), 385-397.

[10] Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. *International journal of production economics*, 176, 98-110.

[11] Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. *Production and operations management*, 27(10), 1868-1883.

[12] Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential. *Health information science and systems*, 2, 1-10.

[13] Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. *Technological forecasting and social change*, 126, 3-13.

[14] Spruit, M., Vroon, R., & Batenburg, R. (2014). Towards healthcare business intelligence in long-term care: an explorative case study in the Netherlands. *Computers in Human Behavior*, 30, 698-707.

[15] Mettler, T., & Vimarlund, V. (2009). Understanding business intelligence in the context of healthcare. *Health Informatics Journal*, 15(3), 254-264.

- [16] Madsen, L. B. (2014). Data-driven healthcare: how analytics and BI are transforming the industry. John Wiley & Sons.
- [17] Giniat, E. J. (2011). Using business intelligence for competitive advantage: data analytics is emerging as a key discipline for healthcare finance. *Healthcare financial management*, 65(9), 142-145.
- [18] Choudhury, A., & Greene, C. M. (2018). Evaluating patient readmission risk: a predictive analytics approach. *arXiv preprint arXiv:1812.11028*.
- [19] Fletcher, G. S., Aaronson, B. A., White, A. A., & Julka, R. (2018). Effect of a real-time electronic dashboard on a rapid response system. *Journal of Medical Systems*, 42, 1-10.
- [20] Kantola, H. (2015). Creating an identity for a heterogeneous system in health care. *Qualitative Research in Accounting & Management*, 12(1), 87-102.