Bioelectronic Insights into Rhopilema hispidum Jellyfish Envenomation and Emerging Therapeutic Strategies

Authors

  • Dr. T. Aravindhan Assistant professor, Department of Biotechnology, Thanthai Hans Roever College of Arts and Science, Perambalur, Tamil Nadu, India Author

Keywords:

bioelectronics, biosensors, wearable devices, personalized medicine, venom detection, therapeutic patches

Abstract

Jellyfish envenomation represents a significant health concern in marine ecosystems, with Rhopilema hispidum stings frequently reported in Asian coastal regions. The venom induces dermatological, neurological, and systemic effects through complex bioactive proteins, peptides, and porins. Recent advances in bioelectronics and biosensor technologies have provided new tools for decoding sting mechanisms and developing real-time therapeutic strategies. By integrating electrochemical sensors, microfluidics, and wearable bioelectronic systems, researchers are bridging marine toxinology with precision medicine.

This paper explores emerging insights into Rhopilema hispidum sting pathophysiology and reviews how biosensors and bioelectronic interfaces are transforming diagnosis and treatment. The literature emphasizes nanomaterial-based sensors, wireless integration, and hybrid therapeutic platforms. Challenges in biocompatibility, scalability, and ethical translation are addressed, with future directions pointing toward bioelectronic-enabled personalized care in marine envenomation.

References

Brinkman, D. L., & Burnell, J. N. (2009). Biochemical and molecular characterisation of cubozoan and scyphozoan jellyfish venoms. Toxicon, 54(6), 830–839.

Cacopardo, L., Costa, J., Giusti, S., Buoncompagni, L., Meucci, S., Corti, A., Mattei, G., & Ahluwalia, A. (2019). Real-time cellular impedance monitoring and imaging of biological barriers in a dual flow membrane bioreactor. arXiv preprint, arXiv:1905.11295.

Hsieh, Y. C., Tsai, Y. C., & Sun, Y. L. (2020). Advances in marine toxin biosensors. Analytical and Bioanalytical Chemistry, 412(25), 6513–6528.

Ibenegbu, A., Schaeffer, A., Lafaye de Micheaux, P., & Chandra, R. (2025). A machine learning framework for handling unreliable absence label and class imbalance for marine stinger beaching prediction. arXiv preprint, arXiv:2501.11293.

Jouiaei, M., Yanagihara, A. A., Madio, B., Nevalainen, T. J., Alewood, P. F., & King, G. F. (2015). Ancient venom systems: A review of cnidarian toxins. Marine Drugs, 13(8), 4666–4703.

Kang, C., Kim, Y. H., Jang, K. H., Park, T. G., Sohn, E. T., & Hwang, D. S. (2011). Proteomic analysis of jellyfish venom to understand its protein components. Toxicon, 58(3), 279–287.

Kesler, V., Murmann, B., & Soh, H. T. (2020). Going beyond the Debye length: Overcoming charge screening limitations in next-generation bioelectronic sensors. arXiv preprint, arXiv:2007.13201.

Li, R., Yu, H., Yue, Y., Zhang, H., Wang, L., & Wang, C. (2019). Proteomic analysis of jellyfish venom: A comprehensive review. Marine Drugs, 17(12), 690.

Liu, G., Lin, Y., Wang, S., Lai, L., & Zhang, G. (2020). Electrochemical biosensors for marine toxin detection: A review. Biosensors and Bioelectronics, 151, 111980.

Mariottini, G. L. (2014). Jellyfish sting management: Current methods and limitations. Marine Drugs, 12(1), 99–118.

Mariottini, G. L. (2020). The biological and toxicological properties of jellyfish venoms. Toxicon, 179, 69–81.

Mariottini, G. L., & Pane, L. (2010). Cytolytic and cytotoxic venom components from cnidarians. Toxicon, 56(8), 1198–1211.

Purcell, J. E. (2005). Climate effects on jellyfish populations: A review. Marine Ecology Progress Series, 296, 241–262.

Rizzo, R., Onesto, V., Forciniti, S., Chandra, A., Prasad, S., Iuele, H., Colella, F., Gigli, G., & del Mercato, L. L. (2024). A pH sensor scaffold for mapping spatiotemporal gradients in three-dimensional in vitro tumour models. arXiv preprint, arXiv:2403.02838.

Semenova, D., Pinto, T., Koch, M., Gernaey, K. V., & Junicke, H. (2021). Electrochemical tuning of alcohol oxidase and dehydrogenase catalysis via biosensing towards butanol-1 detection in fermentation media. arXiv preprint, arXiv:2101.12350.

Terral, O., Audic, G., Claudel, A., Magnat, J., Dupont, A., Moreau, C. J., & Delacour, C. (2024). Graphene field-effect transistors for sensing ion-channel coupled receptors: Towards biohybrid nanoelectronics for chemical detection. arXiv preprint, arXiv:2402.04378.

Travaglini, L., Lam, N. T., Sawicki, A., Cha, H. J., Xu, D., Micolich, A. P., Clark, D. S., & Glover, D. J. (2023). Fabrication of electronically conductive protein-heme nanowires for power harvesting. arXiv preprint, arXiv:2310.10042.

Tyler, W. J. (2024). Auricular bioelectronic devices for health, medicine, and human-computer interfaces. arXiv preprint, arXiv:2409.16169.

Wu, Y., Li, Y., Liu, Y., Zhu, D., Xing, S., Lambert, N., Weisbecker, H., Liu, S., Davis, B., Zhang, L., Wang, M., Yuan, G., You, C. Z., Zhang, A., Duncan, C., Xie, W., Wang, Y., Wang, Y., Kanamurlapudi, S., Guzman, G. E., … Bai, W. (2024). Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants. arXiv preprint, arXiv:2406.13956.

Downloads

Published

2025-01-20